skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Sunhye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Cooking is an important but understudied source of urban anthropogenic fine particulate matter (PM2.5). Using a mobile laboratory, we measured PM size and composition in urban restaurant plumes. Size distribution measurements indicate that restaurants are a source of urban ultrafine particles (UFPs, particles <100 nm mobility diameter), with a mode diameter <50 nm across sampled restaurants and particle number concentrations (PNCs, a proxy for UFPs) that were substantially elevated relative to the urban background. In our observations, PM mass emitted from restaurants was almost entirely organic aerosol (OA). Aerosol mass spectra show that while emissions from most restaurants were similar, there were key mass spectral differences. All restaurants emit OA at m/z 41, 43, and 55, though the composition (e.g., the ratio of oxygenated to reduced ions at specific m/z) varied across locations. All restaurant emissions included reduced-nitrogen species detected as CxHyN+ fragments, making up ∼15 % of OA mass measured in plumes, with reduced molecular functionalities (e.g., amines, imides) that were often accompanied by oxygen-containing functional groups. The largest reduced-nitrogen emissions were observed from a commercial bread bakery (i.e., 30 %–50 % of OA mass), highlighting the marked differences between restaurants and their importance for emissions of both urban UFPs and reduced nitrogen. 
    more » « less